
Surviving in Dependency Hell | c0c0n 2023 //x.com/0xcardinal

Surviving in Dependency Hell 😰
c0c0n 2023 | Kumar Ashwin

1

Surviving in Dependency Hell | c0c0n 2023 //x.com/0xcardinal

About Me

Kumar Ashwin

- Security Engineer
- Deals in Web, Cloud & Software Supply Chain Security
- Talks & Trainings - c0c0n, x33fcon, …

@0xCardinal (https://0xcardinal.com) on socials

2

https://0xcardinal.com

Surviving in Dependency Hell | c0c0n 2023 //x.com/0xcardinal

Agenda

3

��
Premise

��
Strategies

⛳
Conclusion

Surviving in Dependency Hell | c0c0n 2023 //x.com/0xcardinal

Disclaimer

The research was conducted within the Node Ecosystem, but the strategies
discussed in the slides can be applied to other package ecosystems as well.

We will not be talking about creating Dependency Heaven,

but will talk about how to be the Lucifer in the hell.

4

Surviving in Dependency Hell | c0c0n 2023 //x.com/0xcardinal

Matrix Of Hell

5

Source: KodeKloud

Surviving in Dependency Hell | c0c0n 2023 //x.com/0xcardinal

Dependencies

6

Dependency is a term used when your code depends on someone else’s
code usually someone external.

Surviving in Dependency Hell | c0c0n 2023 //x.com/0xcardinal

Dependencies

Types of Dependencies

7

● Direct
● Transitive

Surviving in Dependency Hell | c0c0n 2023 //x.com/0xcardinal

Packages

8

Surviving in Dependency Hell | c0c0n 2023 //x.com/0xcardinal

Top 100 Projects having
4 level of transitive
dependencies.

https://medium.com/graph-commons/analyzin
g-the-npm-dependency-network-e2cf318c1d
0d

9

https://legacy.graphcommons.com/graphs/a7ec343d-2a0c-47bb-9658-bb8315e8a096?show=analysis-cluster

https://medium.com/graph-commons/analyzing-the-npm-dependency-network-e2cf318c1d0d
https://medium.com/graph-commons/analyzing-the-npm-dependency-network-e2cf318c1d0d
https://medium.com/graph-commons/analyzing-the-npm-dependency-network-e2cf318c1d0d
https://legacy.graphcommons.com/graphs/a7ec343d-2a0c-47bb-9658-bb8315e8a096?show=analysis-cluster

Surviving in Dependency Hell | c0c0n 2023 //x.com/0xcardinal

Graph of Readable-stream package
with around 144 nodes (containing 4
level deep dependencies)

10

Surviving in Dependency Hell | c0c0n 2023 //x.com/0xcardinal

Dependency Hell

11

Surviving in Dependency Hell | c0c0n 2023 //x.com/0xcardinal 12

Surviving in Dependency Hell | c0c0n 2023 //x.com/0xcardinal

Dependency Hell

9 Circles of Dependency Hell
● Problems with Package Management

○ Are my dependencies even correct?
○ Updating a new package and breaking something else.
○ Bloated bundles. Too many dependencies.
○ Multiple package managers.
○ The package or version you need isn’t in your package manager.
○ Monkey patching a dependency.
○ Breaking changes on a minor or patch version.
○ Circular dependencies.
○ The diamond dependency problem.

13

https://about.sourcegraph.com/blog/nine-circles-of-dependency-hell

https://about.sourcegraph.com/blog/nine-circles-of-dependency-hell

Surviving in Dependency Hell | c0c0n 2023 //x.com/0xcardinal 14

Are my dependencies even correct?
Mismatched Manifests
Restrictive Licenses

9 Circles of Dependency Hell //

Surviving in Dependency Hell | c0c0n 2023 //x.com/0xcardinal 15

Are my dependencies even correct?
Set-up a proper dependency vetting process.
Dependency manifest(s) as single source of truth to avoid inconsistency.

9 Circles of Dependency Hell //

Surviving in Dependency Hell | c0c0n 2023 //x.com/0xcardinal

Are my dependencies even correct?

● One should vet the dependency before using upon multiple factors -
○ Number of maintainers
○ Number of issues
○ Number of downloads
○ Longest open issue
○ Discussion on the issues, etc.

● Setup processes to identify the drift between the packages installed and the packages
that are mentioned in the manifest.

16

https://github.com/safedep/vet.git
https://www.mariokandut.com/how-to-check-unused-npm-packages/

https://github.com/safedep/vet.git
https://www.mariokandut.com/how-to-check-unused-npm-packages/

Surviving in Dependency Hell | c0c0n 2023 //x.com/0xcardinal 17

Updating a new package and breaking something else.
No dependency vetting
3rd party author’s trustworthiness

9 Circles of Dependency Hell //

https://evertpot.com/npm-revoke-breaks-the-build/
https://qz.com/646467/how-one-programmer-broke-the-internet-by-deleting-a-tiny-piece-of-code
https://www.bleepingcomputer.com/news/security/dev-corrupts-npm-libs-colors-and-faker-breaking-thousands-of-apps/

https://evertpot.com/npm-revoke-breaks-the-build/
https://qz.com/646467/how-one-programmer-broke-the-internet-by-deleting-a-tiny-piece-of-code
https://www.bleepingcomputer.com/news/security/dev-corrupts-npm-libs-colors-and-faker-breaking-thousands-of-apps/

Surviving in Dependency Hell | c0c0n 2023 //x.com/0xcardinal 18

Updating a new package and breaking something else.
Can’t emphasize enough, setup a proper vetting process.
Keeping a local cached copy of the dependencies used (if you are big enough to maintain)

9 Circles of Dependency Hell //

Surviving in Dependency Hell | c0c0n 2023 //x.com/0xcardinal 19

Bloated bundles. Too many dependencies.
Slow builds
Older/unused dependencies in the environment

9 Circles of Dependency Hell //

https://www.darkreading.com/vulnerabilities-threats/on-shaky-ground-why-dependencies-will-be-your-downfall
https://bundlephobia.com/
https://www.bitovi.com/blog/why-your-angular-bundle-is-bloated

https://www.darkreading.com/vulnerabilities-threats/on-shaky-ground-why-dependencies-will-be-your-downfall
https://bundlephobia.com/
https://www.bitovi.com/blog/why-your-angular-bundle-is-bloated

Surviving in Dependency Hell | c0c0n 2023 //x.com/0xcardinal 20

Bloated bundles. Too many dependencies.
Inventory & audit the dependencies.

9 Circles of Dependency Hell //

npm list --depth 100
npm audit

Surviving in Dependency Hell | c0c0n 2023 //x.com/0xcardinal 21

Multiple package managers.
Slow builds
Package conflicts

9 Circles of Dependency Hell //

Surviving in Dependency Hell | c0c0n 2023 //x.com/0xcardinal 22

Multiple package managers.
Ideal scenario is to use one package manager per language.

9 Circles of Dependency Hell //

Surviving in Dependency Hell | c0c0n 2023 //x.com/0xcardinal 23

The package or version you need isn’t in your package
manager.

9 Circles of Dependency Hell //

Surviving in Dependency Hell | c0c0n 2023 //x.com/0xcardinal 24

The package or version you need isn’t in your package
manager.
Use Git Repositories to install packages locally.

9 Circles of Dependency Hell //

Surviving in Dependency Hell | c0c0n 2023 //x.com/0xcardinal 25

Monkey patching a dependency.
Difficult to upgrade
Malicious Monkey Patch

9 Circles of Dependency Hell //

https://arstechnica.com/information-technology/2009/05/mozilla-ponders-policy-change-after-firefox-extension-battle/

a technique used to dynamically update the
behavior of a piece of code at run-time without
altering the original source code.

https://arstechnica.com/information-technology/2009/05/mozilla-ponders-policy-change-after-firefox-extension-battle/

Surviving in Dependency Hell | c0c0n 2023 //x.com/0xcardinal 26

Monkey patching a dependency.
Again in an ideal world you should not monkey patch, but if you must then
properly store and document.

9 Circles of Dependency Hell //

Surviving in Dependency Hell | c0c0n 2023 //x.com/0xcardinal 27

Breaking changes on a minor or patch version.
Patches
Non Semantic Versioning

9 Circles of Dependency Hell //

https://pypi.org/project/html5lib/#history

https://pypi.org/project/html5lib/#history

Surviving in Dependency Hell | c0c0n 2023 //x.com/0xcardinal 28

Breaking changes on a minor or patch version.
Keep the semantic versioning and follow the started ruleset
to define a version - MAJOR.MINOR.PATCH

9 Circles of Dependency Hell //

https://pypi.org/project/requests/#history

https://pypi.org/project/requests/#history

Surviving in Dependency Hell | c0c0n 2023 //x.com/0xcardinal 29

Circular Dependencies.
A -> B -> A
Unintended consequences.

9 Circles of Dependency Hell //

https://medium.com/@louismrc/fix-your-circular-dependencies-with-dependency-inversion-e22b6f4c9510
https://discuss.python.org/t/handling-installation-of-circular-dependencies/25531/8
https://spin.atomicobject.com/2018/06/25/circular-dependencies-javascript/

https://medium.com/@louismrc/fix-your-circular-dependencies-with-dependency-inversion-e22b6f4c9510
https://discuss.python.org/t/handling-installation-of-circular-dependencies/25531/8
https://spin.atomicobject.com/2018/06/25/circular-dependencies-javascript/

Surviving in Dependency Hell | c0c0n 2023 //x.com/0xcardinal 30

Circular Dependencies.
Identify & Avoid using circular dependencies.
Use different design pattern while working on the project.

9 Circles of Dependency Hell //

https://www.npmjs.com/package/madge

https://www.npmjs.com/package/madge

Surviving in Dependency Hell | c0c0n 2023 //x.com/0xcardinal 31

The diamond dependency problem.
Different version of same package

9 Circles of Dependency Hell //

https://docs.copado.com/articles/#!copado-methodology-temp/the-diamond-dependency-problem
https://well-typed.com/blog/2008/08/solving-the-diamond-dependency-problem/

https://docs.copado.com/articles/#!copado-methodology-temp/the-diamond-dependency-problem
https://well-typed.com/blog/2008/08/solving-the-diamond-dependency-problem/

Surviving in Dependency Hell | c0c0n 2023 //x.com/0xcardinal 32

The diamond dependency problem.
Performs the deduplication of the dependency.

9 Circles of Dependency Hell //

https://docs.copado.com/articles/#!copado-methodology-temp/the-diamond-dependency-problem
https://well-typed.com/blog/2008/08/solving-the-diamond-dependency-problem/

https://docs.copado.com/articles/#!copado-methodology-temp/the-diamond-dependency-problem
https://well-typed.com/blog/2008/08/solving-the-diamond-dependency-problem/

Surviving in Dependency Hell | c0c0n 2023 //x.com/0xcardinal

Security Product

- Compliment each other.
- Reduce load from product teams by validating the issues.
- Understand the technical impact by reachability analysis and then

propose the solution.

33

❤

Surviving in Dependency Hell | c0c0n 2023 //x.com/0xcardinal

Closing Pointers

● Minimize dependencies.
● Standardize the package manager.
● Follow semantic versioning.
● Vet the dependency properly.

○ Check for the associated security issues.
○ Backward compatibility and lock file.
○ You Ain’t Gonna Need It (YAGNI) Principle
○ Licensing & Legal Considerations
○ Duplicated functionality
○ Popularity

● Check for the unused or too complex dependencies.

34

Surviving in Dependency Hell | c0c0n 2023 //x.com/0xcardinal

Thank you!
Embrace the chaos!

35

Kumar Ashwin
0xcardinal.com

https://0xcardinal.com

