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Disclaimer

The research was conducted within the Node Ecosystem, but the strategies 
discussed in the slides can be applied to other package ecosystems as well.

We will not be talking about creating Dependency Heaven, 

but will talk about how to be the Lucifer in the hell. 
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Matrix Of Hell
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Source: KodeKloud
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Dependencies
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Dependency is a term used when your code depends on someone else’s 
code usually someone external.
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Dependencies

Types of Dependencies
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● Direct
● Transitive
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Packages
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Top 100 Projects having 
4 level of transitive 
dependencies.

https://medium.com/graph-commons/analyzin
g-the-npm-dependency-network-e2cf318c1d
0d 
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https://legacy.graphcommons.com/graphs/a7ec343d-2a0c-47bb-9658-bb8315e8a096?show=analysis-cluster 

https://medium.com/graph-commons/analyzing-the-npm-dependency-network-e2cf318c1d0d
https://medium.com/graph-commons/analyzing-the-npm-dependency-network-e2cf318c1d0d
https://medium.com/graph-commons/analyzing-the-npm-dependency-network-e2cf318c1d0d
https://legacy.graphcommons.com/graphs/a7ec343d-2a0c-47bb-9658-bb8315e8a096?show=analysis-cluster
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Graph of Readable-stream package 
with around 144 nodes (containing 4 
level deep dependencies)
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Dependency Hell
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Dependency Hell

9 Circles of Dependency Hell
● Problems with Package Management

○ Are my dependencies even correct?
○ Updating a new package and breaking something else.
○ Bloated bundles. Too many dependencies.
○ Multiple package managers.
○ The package or version you need isn’t in your package manager.
○ Monkey patching a dependency.
○ Breaking changes on a minor or patch version.
○ Circular dependencies.
○ The diamond dependency problem.
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https://about.sourcegraph.com/blog/nine-circles-of-dependency-hell 

https://about.sourcegraph.com/blog/nine-circles-of-dependency-hell
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Are my dependencies even correct?
Mismatched Manifests
Restrictive Licenses

9 Circles of Dependency Hell //
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Are my dependencies even correct?
Set-up a proper dependency vetting process.
Dependency manifest(s) as single source of truth to avoid inconsistency. 

9 Circles of Dependency Hell //
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Are my dependencies even correct?

● One should vet the dependency before using upon multiple factors - 
○ Number of maintainers
○ Number of issues
○ Number of downloads
○ Longest open issue
○ Discussion on the issues, etc.

● Setup processes to identify the drift between the packages installed and the packages 
that are mentioned in the manifest.
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https://github.com/safedep/vet.git
https://www.mariokandut.com/how-to-check-unused-npm-packages/ 

https://github.com/safedep/vet.git
https://www.mariokandut.com/how-to-check-unused-npm-packages/
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Updating a new package and breaking something else.
No dependency vetting
3rd party author’s trustworthiness

9 Circles of Dependency Hell //

https://evertpot.com/npm-revoke-breaks-the-build/
https://qz.com/646467/how-one-programmer-broke-the-internet-by-deleting-a-tiny-piece-of-code 
https://www.bleepingcomputer.com/news/security/dev-corrupts-npm-libs-colors-and-faker-breaking-thousands-of-apps/ 

https://evertpot.com/npm-revoke-breaks-the-build/
https://qz.com/646467/how-one-programmer-broke-the-internet-by-deleting-a-tiny-piece-of-code
https://www.bleepingcomputer.com/news/security/dev-corrupts-npm-libs-colors-and-faker-breaking-thousands-of-apps/
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Updating a new package and breaking something else.
Can’t emphasize enough, setup a proper vetting process.
Keeping a local cached copy of the dependencies used (if you are big enough to maintain)

9 Circles of Dependency Hell //
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Bloated bundles. Too many dependencies.
Slow builds
Older/unused dependencies in the environment

9 Circles of Dependency Hell //

https://www.darkreading.com/vulnerabilities-threats/on-shaky-ground-why-dependencies-will-be-your-downfall 
https://bundlephobia.com/ 
https://www.bitovi.com/blog/why-your-angular-bundle-is-bloated 

https://www.darkreading.com/vulnerabilities-threats/on-shaky-ground-why-dependencies-will-be-your-downfall
https://bundlephobia.com/
https://www.bitovi.com/blog/why-your-angular-bundle-is-bloated


Surviving in Dependency Hell | c0c0n 2023 //x.com/0xcardinal 20

Bloated bundles. Too many dependencies.
Inventory & audit the dependencies.

9 Circles of Dependency Hell //

npm list --depth 100
npm audit
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Multiple package managers.
Slow builds
Package conflicts

9 Circles of Dependency Hell //
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Multiple package managers.
Ideal scenario is to use one package manager per language.

9 Circles of Dependency Hell //
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The package or version you need isn’t in your package 
manager.

9 Circles of Dependency Hell //
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The package or version you need isn’t in your package 
manager.
Use Git Repositories to install packages locally.

9 Circles of Dependency Hell //
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Monkey patching a dependency.
Difficult to upgrade
Malicious Monkey Patch

9 Circles of Dependency Hell //

https://arstechnica.com/information-technology/2009/05/mozilla-ponders-policy-change-after-firefox-extension-battle/ 

a technique used to dynamically update the 
behavior of a piece of code at run-time without 
altering the original source code.

https://arstechnica.com/information-technology/2009/05/mozilla-ponders-policy-change-after-firefox-extension-battle/
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Monkey patching a dependency.
Again in an ideal world you should not monkey patch, but if you must then 
properly store and document.

9 Circles of Dependency Hell //
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Breaking changes on a minor or patch version.
Patches
Non Semantic Versioning

9 Circles of Dependency Hell //

https://pypi.org/project/html5lib/#history 

https://pypi.org/project/html5lib/#history
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Breaking changes on a minor or patch version.
Keep the semantic versioning and follow the started ruleset 
to define a version - MAJOR.MINOR.PATCH

9 Circles of Dependency Hell //

https://pypi.org/project/requests/#history 

https://pypi.org/project/requests/#history
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Circular Dependencies.
A -> B -> A
Unintended consequences.

9 Circles of Dependency Hell //

https://medium.com/@louismrc/fix-your-circular-dependencies-with-dependency-inversion-e22b6f4c9510
https://discuss.python.org/t/handling-installation-of-circular-dependencies/25531/8 
https://spin.atomicobject.com/2018/06/25/circular-dependencies-javascript/ 

https://medium.com/@louismrc/fix-your-circular-dependencies-with-dependency-inversion-e22b6f4c9510
https://discuss.python.org/t/handling-installation-of-circular-dependencies/25531/8
https://spin.atomicobject.com/2018/06/25/circular-dependencies-javascript/
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Circular Dependencies.
Identify & Avoid using circular dependencies.
Use different design pattern while working on the project.

9 Circles of Dependency Hell //

https://www.npmjs.com/package/madge 

https://www.npmjs.com/package/madge
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The diamond dependency problem.
Different version of same package

9 Circles of Dependency Hell //

https://docs.copado.com/articles/#!copado-methodology-temp/the-diamond-dependency-problem
https://well-typed.com/blog/2008/08/solving-the-diamond-dependency-problem/ 

https://docs.copado.com/articles/#!copado-methodology-temp/the-diamond-dependency-problem
https://well-typed.com/blog/2008/08/solving-the-diamond-dependency-problem/
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The diamond dependency problem.
Performs the deduplication of the dependency.

9 Circles of Dependency Hell //

https://docs.copado.com/articles/#!copado-methodology-temp/the-diamond-dependency-problem
https://well-typed.com/blog/2008/08/solving-the-diamond-dependency-problem/ 

https://docs.copado.com/articles/#!copado-methodology-temp/the-diamond-dependency-problem
https://well-typed.com/blog/2008/08/solving-the-diamond-dependency-problem/
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Security        Product

- Compliment each other.
- Reduce load from product teams by validating the issues.
- Understand the technical impact by reachability analysis and then 

propose the solution.
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❤ 
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Closing Pointers

● Minimize dependencies.
● Standardize the package manager.
● Follow semantic versioning.
● Vet the dependency properly.

○ Check for the associated security issues.
○ Backward compatibility and lock file.
○ You Ain’t Gonna Need It (YAGNI) Principle
○ Licensing & Legal Considerations
○ Duplicated functionality
○ Popularity

● Check for the unused or too complex dependencies.
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Thank you!
Embrace the chaos!
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